Go to content
- {{#headlines}}
- {{title}} {{/headlines}}
Profile
| Academic position | Associate Professor, Senior Lecturer, Reader |
|---|---|
| Research fields | Plant Genetics and Genomics,Organismic Interactions, Chemical Ecology and Microbiomes of Plant Systems |
| Keywords | Defence, Gene function, Plant immunity, Pathogen, Signal transduction |
| Honours and awards | 2023: Elected Fellow of The Royal Society, UK 2023: Elected International Member of US National Academy of Sciences 2016: EMBO member 2013: Elected to ‘Leopoldina’ German National Academy of Sciences |
Current contact address
| Country | Germany |
|---|---|
| City | Köln |
| Institution | Max-Planck-Institut für Pflanzenzüchtungsforschung |
| Institute | Plant-Microbe Interactions |
Host during sponsorship
| Prof. Dr. Paul Schulze-Lefert | Abteilung Molekulare Pflanzengenetik (Prof. Saedler), Max-Planck-Institut für Pflanzenzüchtungsforschung, Köln |
|---|---|
| Prof. Dr. Heinz Saedler | Abteilung Molekulare Pflanzengenetik (Prof. Saedler), Max-Planck-Institut für Pflanzenzüchtungsforschung, Köln |
| Start of initial sponsorship | 01/09/2001 |
Programme(s)
| 2001 | Sofja Kovalevskaja Award Programme |
|---|
Nominator's project description
| Dr. Jane Parkers research activities are aimed at unravelling disease resistance signalling pathways in the model plant, Arabidopsis. Some of these pathways are triggered by specific recognition between plant Resistance (R) gene and pathogen avirulence (avr) gene-encoded products. Other pathways exert low level "basal" resistance against virulent pathogens. Her group identified in mutational screens genes that are essential for R gene-triggered resistance. Two of these genes, EDS1 and PAD4 , are recruited by one structural class of intracellular, nucleotide-binding/leucine-rich repeat (NB-LRR) R proteins. EDS1 and PAD4 are also necessary for expression of basal resistance. Engagement of the other two genes, RAR1 and SGT1, is not determined by a particular NB-LRR protein type. Also, their activities appear to be restricted to R gene-conditioned responses. In her future work, Jane Parker is going to use a combination of genetic, molecular and biochemical approaches to understand how the regulatory proteins EDS1, PAD4, RAR1, and SGT1 perform their respective roles in plant defence and discover which cellular processes they alter. |